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INTRODUCTION

1. Motivation and outline

Fractional calculus is a very old field, dating back to a letter from Leibniz
to L´Hospital in 1695. In recent decades, the subject has expanded rapidly,
due to the discovery of interesting mathematical connections, and real world
applications.

In history, the fractional calculus has drawn the attention from many pioneering
mathematicians such as Euler, Laplace, Fourier, Liouville, Riemann, Laurant,
Hardy, and Riesz etc. The applications of the fractional calculus in physics were
initially undertaken by Abel and Heaviside. Nowadays, it has been seen that
fractional differential equations have been widely applied in almost every scientific
field, and in many realistic applications it appears to have better effects than the
classical ones. Qualitative theory and its applications in physics, engineering,
economics, biology and ecology are extensively discussed and demonstrated in
Ahmed (2007), Butzer and Hilfer (2000), Kilbas (2006) and the references therein.

Considerable attention has been attracted to the time fractional diffusion-wave
equations which arise in electromagnetic, acoustic and mechanical phenomena etc
[20], and are derived from the classical diffusion or wave equations by replacing
the first- or second-order time derivative by a fractional derivative of order α
with α ∈ (0, 2]. For α ∈ (0, 1], it is a fractional diffusion equation, which was
explicitly applied to physics by Nigmatullin [24] to describe diffusion in media
with fractal geometry (special types of porous media). For α ∈ (1, 2], it is a
fractional wave equation, which governs the propagation of mechanical diffusive
waves in viscoelatics media that reveals a power-law creep and thus provides us
a physical interpretation in the framework of dynamical viscoelaticity (see Hilfer
(2000), Mainardi (2001), Metzler (2000)).

On the stable in Lyapunov senses for differential inclusions, it is seen that using
Lyapunov functional method is not impractical because Cauchy problems may
be not uniqueness. In addition, for fractional differential systems, it is difficult
to calculus the fractional derivative of Lyapunov function. Therefore, results on
stability solutions in Lyapunov senses are less known. Our next objective is to
use fixed point approaches introduced by Bu (2006) to analyze long time behavior
for semi linear differential inclusions with infinite delays in Banach spaces, and
the weak stability of zero solution will be considered.

In other direction, although the long time behaviors play an important roles in
many real problems, transient behaviours are likely to be more relevant in some
model related to biochemical networks or signal transduction in which processes
happen in short time. It leads to the fact that finite time dynamical system has
been studied by many mathematicians. Readers can see some recent works on this
direction in the works written by Berger (2011), Duc et al. (2008, 2011, 2016),
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Giesl and Rasmussen (2012), Rasmussen (2007). Using a concept of finite time
dynamical for nonautonomous system in finite dimensional spaces was proposed
by Giesl and Rasmussen (2012), we study the finite time attractivity for evolution
differential inclusions with delays in Banach spaces. Our purposes is to look for
admissible assumptions on the linear part as well as the nonlinear part such that
it is possible to give sufficient conditions ensuring the finite time attractivity for
the trivial solution.

We now give a brief description for our main contents in this thesis.

Firstly, we study the existence and stability of solutions to the following prob-
lem in a Banach space X:

u′(t) =

∫ t

0

(t− s)α−2

Γ(α− 1)
Au(s)ds+ f(t, u(t), ut), t > 0, t 6= tk, k ∈ Λ, (1)

u(t+k )− u(t−k ) = Ik(u(tk)), k ∈ Λ, (2)

u(s̄) + g(u)(s̄) = ϕ(s̄), s̄ ∈ [−h, 0], (3)

where A is a closed, linear and unbounded operator, f , g and Ik are the functions
which will be specified later. Here α ∈ (1, 2) and Λ ⊂ N is an index set. Here by
u(t+k ) and u(t−k ) we mean the right and left limit of u at tk, respectively; ut stands
for the history of the state function up to the time t, i.e. ut(s̄) = u(t + s̄), s̄ ∈
[−h, 0]. It is obvious that, the principal part

u′(t) =

∫ t

0

(t− s)α−2

Γ(α− 1)
Au(s)ds

can be viewed as

u(t) =

∫ t

0

(t− s)α−1

Γ(α)
Au(s)ds+ u(0). (4)

The last equation in the case A is the Laplace operator was studied in Fujita
(2009). As discussed in these papers, (4) is intermediate between the diffusion
(α = 1) and the wave (α = 2) equation. In addition, it is known that the following
prototype of (1):

∂u

∂t
(x, t) =

1

Γ(α− 1)

∫ t

0

(t− s)α−2∆xu(x, s)ds+ F (x, t, u(x, t))

describes the anomalous diffusion processes and wave propagations in viscoelastic
materials.

The generalized Cauchy problem involving nonlocal and/or impulsive condi-
tions has been an active subject for many investigations in recent years. It is
known that, nonlocal conditions give a better description for real models than
classical initial ones, e.g., the condition

u(s) +
M∑
i=1

ciu(τi + s) = ϕ(s)

allows taking additional measurements instead of solely initial datum. The first
result and physical meaning for nonlocal problems go back to the work of Byszewski
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(1991). It then has aroused an increasingly interest in various nonlocal problems
involving integer order differential equations and inclusions. For some remark-
able solvability results, we quote here the works in Chuong (2012), Hernández
(2003), Jesús (2008), Ke (2012), Liu (2003). On the other hand, impulsive condi-
tions has been used to describe the dynamical systems having abrupt changes. A
comprehensive investigation for impulsive differential equations can be found in
Lakshmikantham (1989). Evidently, the generalized Cauchy problems with non-
local conditions and impulsive effects play an important role in describing many
real world problems. Due to the application of fractional derivatives in modeling
and the development of fractional calculus, the integer order differential systems
have been generalized to many models involving fractional differential equations.

Recently, some authors have already drawn attention to the Cauchy problems
driven by fractional integro-differential equations as in (1). The results on asymp-
totically periodic solutions were obtained in Andrade (2010) Cuevas (2009, 2010).
Considering a fractional integro-differential equation in neutral form, the authors
in Caravalho (2010) showed the existence of asymptotically almost automorphic
solutions. Let us take a note that in these works, the models under investigation
have neither nonlocal nor impulsive condition. We also concern with the exis-
tence results in Wang (2010), in which the considered model involved a nonlocal
condition. It should be noted that, in the mentioned works, no attempt has been
made to consider stability problems. This is the main motivation for our study
in the present paper.

Regarding the stability for differential equations, the Lyapunov functional
method is an effective tool for problems in finite dimensional spaces. However, it
is not easily done for fractional integro-differential equations in Banach spaces.
In this work, we will employ the fixed point approach initiated by Burton and
Furumochi for ordinary/functional differential equations. The main idea of this
method is to construct a stable subset, in which the solution operator has a unique
fixed point. By this approach, we will prove that the zero solution for (1)-(3) is
BI-asymptotically stable, that is u(t)→ 0 as t→ +∞ for all bounded initial data
ϕ.

Second, we consider following problem

u′(t) ∈
∫ t

0

(t− s)α−2

Γ(α− 1)
Au(s)ds+ F (t, ut), t > 0, (5)

u0 = ϕ ∈ B, (6)

where the unknown function u takes values in a Banach space (X, ‖ · ‖), A is a
closed, linear and unbounded operator, F is a multi-valued map which will be
specified in Section 3, B is an admissible phase space that will be defined later.
Here α ∈ (1, 2) and ut stands for the history of the state function up to the time
t, i.e. ut(s) = u(t+ s), s ≤ 0.

Our problem in this part involves the multi-valued nonlinearity, which de-
rives from control systems with multi-valued feedback (Kamenskii (2001)), and
various problems such as regularizing differential equations with discontinuous
right-hand side (Filippov (1988)), converting differential variational inequalities
(Pang (2008)). The main aim of this work is to address, for the first time, weak
stability of solutions to (5)-(6). We adopt the following concept of weakly asymp-
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totic stability. Let Σ(ϕ) be the solution set of (5)-(6) with respect to the initial
datum ϕ. Assume that 0 ∈ Σ(0), that is (5) admits zero solution. The zero
solution of (5) is said to be weakly asymptotically stable if

1) It is stable, i.e. for every ε > 0 there exists δ > 0 such that if |ϕ|B < δ then
|ut|B < ε for all u ∈ Σ(ϕ);

2) It is weakly attractive, i.e. for each ϕ ∈ B, there exists u ∈ Σ(ϕ) such that
|ut|B → 0 as t→∞.

Let us give a short description for our approach. By analyzing the behavior
of α-resolvent {Sα(t)}t≥0 generated by the linear part, we construct appropriate
solution spaces, on which the solution operator has a fixed point. To this end, we
define a suitable measure of noncompactness (MNC) on the solution spaces, in
which the solution operator is condensing. It is worth mentioning that the fixed
point approach for study stability of ordinary/functional differential equations
was introduced by Burton and Furumochi as an alternative for the Lyapunov
functional method.

The last content in this thesis is devoted to study finite time attractivity of
the zero solution to the following functional differential system. Let (X, ‖ · ‖) be
a Banach space. We consider the following problem

Dα,σu(t) = Au(t) + f(t, ut), t ∈ [0, T ], (7)

u(s) = ϕ(s), s ∈ [−h, 0], (8)

u′(0) = y, (9)

where α ∈ (1, 2), σ > 0, Dα,σ represents the tempered fractional derivative of
order α in the Caputo sense, the state function u takes values in X with the
history state ut ∈ C([−h, 0];X) defined by ut(s) = u(t + s), s ∈ [−h, 0], A is
a closed linear operator on X such that −A is sectorial, and the nonlinearity
function f is defined on [0, T ]× C([−h, 0];X).

In the case σ = 0 and A stands for partial differential operators in a specific
setting, equation (7) is used to interpret the propagation of waves in viscoelastic
media. This equation in various settings has been the subject for a numerous
studies in the last decades, in which the analysis of solvability, regularity and
numerical schemes was addressed (see, for instance, Chen (2017), Deng (2017),
Li (2016)). It should be mentioned that, the appearance of the delayed term in
(7) is a nature of models derived from real life problems.

As a generalization of fractional calculus, the tempered fractional calculus has
been developed to deal with a number of problems in poroelasticity (Hanyga
(2001)), geophysical flows (Meerschaert (2014)), ground water hydrology (Meer-
schaert (2008)), etc. Many important motivations to extend the fractional calcu-
lus to tempered fractional calculus can be found in Sabzikar (2015).

Recently, there appear several works devoted to numerical methods for tem-
pered fractional differential equations. Nevertheless, the analysis of behavior of
solutions to this class of equations is less known. In particular, no attempt has
been made for the qualitative study on (7). In this paper, we will prove a solvabil-
ity result for problem (7)-(9) under general settings (without Lipschitz condition
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on f and compactness on the semigroup generated by A, these cases were dis-
cussed in Feng (2016) for σ = 0). In addition, we analyze behavior of solutions to
(7) by employing the concept of finite-time attractivity proposed in Giesl (2012).

Let us give a short description on our approach. We prove the existence result
by using the fixed point theory for condensing maps, which requires the nonlin-
earity function f satisfy a regular property expressed by the Hausdorff measure
of noncompactness. It should be noted that, in our setting, the function f may
have a superlinear growth. To analyze the finite-time attractivity of solutions,
we derive some local estimates (estimates with small initial data) and make use
of the singular Gronwall inequality.

2. Purpose, objects and scope of the thesis

2.1. Purpose: The thesis focus on studying behavior of solutions to nonautono-
muous semilinear differential evolution equations and inclusions with delays in
Banach spaces using stability theory. More precisely as follows

1) The asymptotic stability of a class of fractional integro-differential equations
involving impulsive effects and nonlocal conditions, whose principal part is
of diffusion-wave type.

2) The existence of decay solutions and the weak asymptotic stability of the
zero solution for integro-differential inclusions of diffusion-wave type involving
infinite delays.

3) Establish sufficient conditions for finite-time attractivity solutions and ap-
plied to the solution of semilinear tempered fractional wave equations with
sectorial operator and superlinear nonlinearity..

2.2. Objects: In the thesis, we consider some types of semilinear fractional
differential systems in Banach spaces:

• The first type: Fractional integro-differential equations involving impulsive
effects and nonlocal conditions with finite delays;

• The second one: Fractional integro-differential inclusions with infinite delays;

• The third one: Semilinear tempered fractional wave equations with finite
delays.

2.3. Scope: The scope of the thesis is defined by the following contents

• Content 1: Study the solvability for nonautonomuos integro-differential
equations and inclusions with delays;

• Content 2: Study the asymptotic stability for the zero solution to frac-
tional integro-differential equations involving impulsive effects and nonlocal
conditions with finite delays;

• Content 3: Study the weak asymptotic stability for the zero solution to
fractional integro-differential inclusions with infinite delays;

• Content 4: Study the finite-time attractivity for the solution to semilinear
tempered fractional wave equations with finite delays.
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3. Research Methods

◦ To prove the existence of solutions to fractional differential equations and
inclusions, we employ the semigroup theory (see MNC’s estimates (see Bothe
(1998) ), and fixed point theory for condensing multimaps (see Kamenskii et
al (2001)).

◦ To study the stability of the zero solution to fractional differential equations
and inclusions with delays and the finite-time attractivity of the zero solution
to system with finite delays, we make use of the fixed point principles and
prior estimates techniques.

4. Structure and Results

Together with the Introduction, Conclusion, Author’s works related to the
thesis that have been published and References, the thesis includes five chapters:
Chapter 1 is devoted to present some preliminaries. In Chapter 2, we present the
solvability and prove the asymptotic stability for the zero solution to fractional
integro-differential equations involving impulsive effects and nonlocal conditions
with finite delays. Chapter 3 we study the weak asymptotic stability for the zero
solution to fractional integro-differential inclusions with infinite delays. Chapter
4 we prove the finite-time attractivity for the solution to semilinear tempered
fractional wave equations with finite delays on compact intervals.
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Chapter 1

PRELIMINARIES

In this chapter, we present some preliminaries including: some results about
fractional caculus; resolvent theory; measure of noncompactness; multi-valued
calculus and fixed point principles.

1.1. FRACTIONAL CACULUS

In this section, we recall some concept and properties related to fractional
derivatives and fractional integral.

1.2. RESOLVENT THEORY

In this section, we recall some concept related to cosine family, semigroup and
resolvent.

1.3. MEASURE OF COMPACTNESS (MNC) AND MNC ESTIMATES

In this section, we present concept of MNC and some estimates related to
Hausdorff MNC. It is noted that some estimates on Banach space and separable
Banach space are different.

1.4. MULTIVALUED CALCULUS AND SOME FIXED POINT THEOREMS

1.4.1. Multivalued calculus

In this subsection, we present some definitions and results in multivalued cal-
culus, including concept of selector and the existence of selection function. Some
important results are stated in Proposition 1.5 and 1.6.

1.4.2. Condensing map and some fixed point theorems

In this subsection, we recall some fixed point principles for condensing multi-
valued map.

1.5. STABILITY FOR DIFFERENTIAL SYSTEMS

In this section, we recall some concept related to Lyapunov stability, weak
stability, finite-time stability and finite-time attractivity.

1.6. FUNCTIONAL SPACES

In this section, we recall some functional spaces used in the thesis, such as:
Lp(Ω), 1 ≤ p < +∞; L∞(Ω); Lploc(Ω), 1 ≤ p < +∞, where Ω a bounded domain
in Rn. some functional spaces depending on time: C([a, b];E); Lp(a, b;E); Cτ :=
C([−τ, 0];E), τ > 0 given, where E is a Banach space. Specially, we recall the
phase space introduced by Hale-Kato B.
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Chapter 2

STABILITY FOR A CLASS OF SEMILINEAR
DEFFUSION-WAVE EQUATIONS WITH IMPULSIVE CONDITION AND

FINITE DELAYS

In this chapter, we deal with a class of fractional integro-differential equa-
tions involving impulsive effects and nonlocal conditions, whose principal part
is of diffusion-wave type. Our aim is to establish some existence and stability
results for integral solutions to the mentioned problem by fixed point approach.

The content of this chapter is written based on the paper [1] in the author’s
works related to the thesis that has been published.

2.1. PROBLEM SETTING

Let (X, ‖ · ‖) be a Banach space, we consider the following problem:

u′(t) =

∫ t

0

(t− s)α−2

Γ(α− 1)
Au(s)ds+ f(t, u(t), ut), t > 0, t 6= tk, k ∈ Λ, (2.1)

u(t+k )− u(t−k ) = Ik(u(tk)), k ∈ Λ, (2.2)

u(s̄) + g(u)(s̄) = ϕ(s̄), s̄ ∈ [−h, 0], (2.3)

where A is a closed, linear and unbounded operator, f , g and Ik are the functions
which will be specified later. Here α ∈ (1, 2) and Λ ⊂ N is an index set. Here by
u(t+k ) and u(t−k ) we mean the right and left limit of u at tk, respectively; ut stands
for the history of the state function up to the time t, i.e. ut(s̄) = u(t + s̄), s̄ ∈
[−h, 0].

2.2. SOLVABILITY

In this section, let Ch = C([−h, 0];X) and χh be the Hausdorff MNC in Ch.
Concerning problem (1)-(3), we give the following assumptions.

(A) The operator A is sectorial of type (ω, θ) with 0 ≤ θ < π(1 − α/2) so that the
α-resolvent Sα(·) generated by A is norm continuous for t > 0.

(F) The nonlinear function f : R+ ×X × Ch → X satisfies:

(1) f(·, v, w) is measurable for each (v, w) ∈ X × Ch, f(t, ·, ·) is continuous for
a.e. t ∈ [0, T ] and

||f(t, v, w)||X ≤ k(t)Ψf(||v||X + ||w||Ch),
for all (v, w) ∈ X ×Ch, where k ∈ L1

loc(R+), Ψf is a real-valued, continuous
and nondecreasing function;

(2) there exists a function m : R2
+ → R+ such that m(t, ·) ∈ L1(0, t), t > 0, and

for all bounded subsets V ⊂ X,W ⊂ Ch,
χ(Sα(t− s)f(s, V,W )) ≤ m(t, s)[χ(V ) + χh(W )],
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for a.e. t, s ∈ [0, T ], s ≤ t.

(I) The impulsive function Ik : X → X, k ∈ Λ, satisfies:

(1) Ik is continuous and there exists lk ≥ 0 verifying that

||Ik(x)|| ≤ lkΨI(||x||),
where ΨI is a real-valued, continuous and nondecreasing function;

(2) there is a number µk ≥ 0 such that

χ(Ik(V ) ≤ µkχ(V ),

for all bounded set V ⊂ X.

(G) The nonlocal function g : PC([−h, T ];X)→ Ch obeys the following conditions:

(1) g is continuous and
||g(u)||Ch ≤ Ψg(||u||PC),

for all u ∈ PC, where Ψg is a continuous and nondecreasing function on R+;
(2) there exists η ≥ 0 such that for any bounded set D ⊂ PC([−h, T ];X),

χh(g(D)) ≤ ηχPC(D).

We have the following definition of integral solution to (2.1)-(2.3).

Definition 2.1. A function u ∈ PC([−h, T ];X) is said to be an integral solution
of problem (2.1)-(2.3) on the interval [−h, T ] if and only if u(t) = g(u)(t) + ϕ(t)
for t ∈ [−h, 0], and

u(t) = Sα(t)[ϕ(0)− g(u)(0)] +
∑

0<tk<t

Sα(t− tk)Ik(u(tk))

+

∫ t

0

Sα(t− s)f(s, u(s), us)ds,

for any t ∈ [0, T ].

Let F : PC([−h, T ];X)→ PC([−h, T ];X), where

F(u)(t) =


ϕ(t) + g(u)(t), t ∈ [−h, 0],

Sα(t)[ϕ(0)− g(u)(0)] +
∑

0<tk<t
Sα(t− tk)Ik(u(tk))

+
∫ t

0 Sα(t− s)f(s, u(s), us)ds, t ∈ [0, T ].

Then u is an integral solution of (2.1)-(2.3) if it is a fixed point of the solution
operator F .

Now we prove the condensivity of the solution operator.

Lemma 2.1. Let the hypotheses (A), (F), (G) and (I) hold. Then the solution
operator F satisfies

χPC(F(D)) ≤
[(
η +

∑
tk∈[0,T ]

µk
)
STα + 8 sup

t∈[0,T ]

∫ t

0

m(t, s)ds

]
χPC(D),

for all bounded set D ⊂ PC([−h, T ], X), here STα = supt∈[0,T ] ||Sα(t)||.
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Using the fixed point theorem for condensing operators gives us the existence
result.

Theorem 2.1. Assume that the hypotheses of Lemma 2.1 hold. Then the problem
(2.1)-(2.3) has at least one integral solution in PC([−h, T ];X), provided that(

η +
∑

tk∈[0,T ]

µk
)
STα + 8 sup

t∈[0,T ]

∫ t

0

m(t, s)ds < 1, (2.4)

and

lim inf
r→∞

1

r

[(
Ψg(r) + ΨI(r)

∑
tk∈[0,T ]

lk
)
STα

+ Ψf(2r) sup
t∈[0,T ]

∫ t

0

‖Sα(t− s)‖k(s)ds

]
< 1,

(2.5)

where STα is given in Lemma 2.1.

2.3. STABILITY RESULTS

In order to study the stability results for problem (2.1)-(2.3), we consider the
function space

PC0 = {u ∈ PC([−h,+∞);X) : lim
t→∞

u(t) = 0}

with the norm
‖u‖∞ = sup

t≥0
‖u(t)‖,

where PC([−h,∞);X) is defined similarly to PC([−h, T ];X) as T = +∞.

Then PC0 is a Banach space. In this section, we replace assumptions (A), (F),
(G) and (I) by the following:

(Aa) The operator A is sectorial of type (ω, θ) such that ω < 0 and 0 ≤ θ < π(1 −
α/2).

(Fa) f(·, v, w) is measurable for each v ∈ X,w ∈ Ch, f(t, ·, ·) is continuous for a.e.
t ∈ R+, f(t, 0, 0) = 0, and there exists k ∈ L1(R+), such that

||f(t, v1, w1)− f(t, v2, w2)|| ≤ k(t)(||v1 − v2||+ ||w1 − w2||Ch), t ∈ R+,

for all v1, v2 ∈ X,w1, w2 ∈ Ch.
(Ga) g is a continuous function satisfying that g(0) = 0 and there is a nonnegative

number η such that

||g(w1)− g(w2)||Ch ≤ η||w1 − w2||PC,
for all w1, w2 ∈ PC([−h, T ];X), with all T > 0.

( Ia ) Ik, k ∈ Λ, is continuous, Ik(0) = 0 and there exist a sequence {µk}, k ∈ Λ such
that

∑
k∈Λ

µk <∞, and

||Ik(x)− Ik(y)|| ≤ µk||x− y||, for all x, y ∈ X.
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Theorem 2.2. Let (Aa), (Fa), (Ga), and (Ia) hold. Then problem (2.1)-(2.3)
has a unique solution u ∈ PC0 provided that(

η +
∑
k∈Λ

µk
)
S∞α + 2 sup

t≥0

∫ t

0

‖Sα(t− s)‖k(s)ds < 1, (2.6)

where S∞α = sup
t≥0
‖Sα(t)‖.

2.4. APPLICATION

We give an application to the abstract results. Let Ω ⊂ Rn be a bounded
domain with the smooth boundary ∂Ω. We consider the following system:

∂u

∂t
(x, t) =

∫ t

0

(t− s)α−2

Γ(α− 1)
Lxu(x, s)ds+ k(t)f̃(x, u(x, t), u(x, t− h)), (2.7)

α ∈ (1, 2), t ∈ R+\{tk}k∈Λ, x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, t ∈ R+, (2.8)

u(x, t+k ) = u(x, tk) + Ĩk(x, u(x, tk)), x ∈ Ω, k ∈ Λ, (2.9)

u(x, s) +
M∑
i=1

ciu(x, τi + s) = ϕ(s), s ∈ [−h, 0], x ∈ Ω, (2.10)

where the operator

Lx =
n∑

i,j=1

aij
∂2

∂xi∂xj

has the property
n∑

i,j=1

aijξiξj ≥ θ|ξ|2, ∀ξ ∈ Rn

with θ > 0. Let X = L2(Ω), A = Lx with D(A) = H2(Ω) ∩H1
0(Ω). Then system

(2.7)-(2.10) is in the form of the abstract model (2.1)-(2.3) with

f(t, v, w)(x) = k(t)f̃(x, v(x), w(x,−h)), v ∈ X,w ∈ C([−h, 0];X),

Ik(v)(x) = Ĩk(x, v(x)), v ∈ X,

g(u)(s)(x) =
M∑
i=1

ciu(x, τi + s), u ∈ PC([−h,+∞);X).

It is known that, A is a sectorial operator and it generates an analytic semigroup
in X. Moreover, one can check that A is sectorial of type (λ1, 0) where λ1 < 0 is
the first eigenvalue of A.

Assume that k ∈ L1(R) and f̃ : Ω× R× R→ R such that

|f̃(x, y1, z1)− f̃(x, y2, z2)| ≤ κ(x)(|y1 − y2|+ |z1 − z2|), κ ∈ X,
for all x ∈ Ω, y1, y2, z1, z2 ∈ R. Then we have

||f(t, v1, w1)− f(t, v2, w2)|| ≤ k(t)||κ||(||v1 − v2||+ ||w1(·,−h)− w2(·,−h)||)
≤ k(t)||κ||(||v1 − v2||+ ||w1 − w2||Ch),
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for all v1, v2 ∈ X,w1, w2 ∈ Ch.
Let Ĩk : Ω× R→ R be such that

|Ĩk(x, y1)− Ĩk(x, y2)| ≤ `k(x)|y1 − y2|, `k ∈ X,

for all x ∈ Ω, y1, y2 ∈ R. Then

||Ik(v1)− Ik(v2)|| ≤ ||`k|| ||v1 − v2||,∀v1, v2 ∈ X.

Regarding the nonlocal function g, it is obvious that

||g(u1)− g(u2)||Ch ≤
( M∑

i=1

ci
)
||u1 − u2||PC,∀u1, u2 ∈ PC([−h, T ];X),∀T > 0.

Under the above settings, applying Theorem 2.2, one can state that problem
(2.7)-(2.10) has a unique integral solution in PC0, provided that( M∑

i=1

ci +
∑
k∈Λ

||`k||
)
S∞α + 2||κ|| sup

t≥0

∫ t

0

‖Sα(t− s)‖k(s)ds < 1.
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Chapter 3

WEAK STABILITY FOR A CLASS OF
DEFFUSION-WAVE INCLUSIONS WITH INFINITE DELAYS

In this chapter, we deal with the Cauchy problem associated with integro-
differential inclusions of diffusion-wave type involving infinite delays. Based on
the behavior of resolvent operator associated with the linear part, an explicit
estimate for solutions will be established. As a consequence, the weak stability
of zero solution is proved in case the resolvent operator is asymptotically stable.

The content of this chapter is written based on the paper [2] in the author’s
works related to the thesis that has been published.

3.1. PROBLEM SETTING

We consider the following problem

u′(t) ∈
∫ t

0

(t− s)α−2

Γ(α− 1)
Au(s)ds+ F (t, ut), t > 0, (3.1)

u0 = ϕ ∈ B, (3.2)

where the unknown function u takes values in a Banach space (X, ‖ · ‖), A is a
closed, linear and unbounded operator, F is a multi-valued map which will be
specified in Section 3, B is an admissible phase space that was defined in Chapter
1. Here α ∈ (1, 2) and ut stands for the history of the state function up to the
time t, i.e. ut(s) = u(t+ s), s ≤ 0.

3.2. EXPONENTIALLY BOUNDED SOLUTIONS

Concerning problem (3.1)-(3.2), we give the following assumptions:

(A) The operator A is sectorial of type (ω, θ) with ω ≥ 0 and 0 ≤ θ < π(1−α/2)
so that the α-resolvent Sα(·) generated by A is norm continuous.

(B) The phase space B obeys (B1)-(B4) such that the functions K and M
g

are
uniformly bounded.

(F) The multimap F : R+ × B → Kv(X) satisfies:

(1) for any ψ ∈ B the multimap F (·, ψ) : R+ → Kv(X) admits a locally
strongly measurable selector, i.e. for each T > 0 one can find a strongly
measurable function f : [0, T ] → X such that f(t) ∈ F (t, ψ) for a.e.
t ∈ [0, T ];

(2) for a.e. t ∈ R+ the multimap F (t, ·) : B → Kv(X) is u.s.c on B;

(3) there exist nonnegative functions m, p such that m, p
g
∈ L1(R+), and for

every ψ ∈ B we have

‖F (t, ψ)‖ := sup{‖ξ‖ : ξ ∈ F (t, ψ)} ≤ m(t)|ψ|B + p(t)
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for a.e. t ∈ R+;

(4) there exists a function k ∈ L∞(R+) such that, for every bounded set
D ⊂ B we have χ(F (t,D)) ≤ k(t) sup

s≤0
χ(D(s)) a.e. t ∈ R+.

By the arguments in Chapter 2, we adopt the following definition of solution
to (3.1)-(3.2).

Definition 3.1. Given ϕ ∈ B. A function u : R → X is said to be an integral
solution of problem (3.1)-(3.2) if there exists f ∈ PF (u|R+) such that

u(t) =

{
ϕ(t), t ≤ 0,

Sα(t)ϕ(0) +
∫ t

0 Sα(t− s)f(s)ds, t > 0.

Now we consider the multi-valued operator

F : Cg,ϕ → P(Cg,ϕ),

F(v)(t) = Sα(t)ϕ(0) +

{∫ t

0

Sα(t− s)f(s)ds : f ∈ PF (v)

}
(3.3)

It is clear that if v is a fixed point of F then v[ϕ] is an integral solution to
(3.1)-(3.2).

Theorem 3.1. Let the assumptions (A), (B) and (F) hold. Then the problem
(3.1)-(3.2) has at least one integral solution satisfying ‖u(t)‖

g(t)
= o(1) as t → ∞,

provided that

sup
t≥0

∫ t

0

‖Sα(t− s)‖
g(t− s)

K(s)m(s)ds < 1. (3.4)

3.3. WEAK STABILITY RESULT

One observes that, by choosing g ≡ 1 and proceeding as in the previous section,
we can prove the existence of attracting solutions to (3.1)-(3.2) and then infer the
weakly asymptotic stability of zero solution. Precisely, we consider the solution
operator F on the space

BC0,ϕ = {v ∈ C([0,∞);X) : v(0) = ϕ(0), lim
t→∞
‖v(t)‖ = 0},

with the norm
‖v‖∞ = sup

t≥0
‖v(t)‖.

In this circumstance, (A), (B) and (F) are replaced by the following assumptions.

(A’) The operator A is sectorial of type (ω, θ) with ω < 0 and 0 ≤ θ < π(1−α/2)
so that the α-resolvent Sα(·) generated by A is norm continuous.

(B’) The phase space B obeys (B1)-(B4) such that the function K is uniformly
bounded and M satisfies M(t) = o(1) as t→∞.

(F’) The multimap F : R+ × B → Kv(X) satisfies:
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(1) for any ψ ∈ B the multimap F (·, ψ) : R+ → Kv(X) admits a locally
strongly measurable selector, i.e. for each T > 0 one can find a strongly
measurable function f : [0, T ] → X such that f(t) ∈ F (t, ψ) for a.e.
t ∈ [0, T ];

(2) for a.e. t ∈ R+ the multimap F (t, ·) : B → Kv(X) is u.s.c on B;

(3) there exists a function m ∈ L1(R+) such that for every ψ ∈ B we have

‖F (t, ψ)‖ := sup{‖ξ‖ : ξ ∈ F (t, ψ)} ≤ m(t)|ψ|B,
for a.e. t ∈ R+;

(4) there exists a function k ∈ L∞(R+) such that, for every bounded set
D ⊂ B we have χ(F (t,D)) ≤ k(t) sup

s≤0
χ(D(s)) a.e. t ∈ R+.

As a consequence, we have the following result.

Theorem 3.2. Let the hypotheses (A’), (B’) and (F’) holds. If the following
condition

Λ∞ = sup
t≥0

∫ t

0

‖Sα(t− s)‖K(s)m(s)ds < 1, (3.5)

is satisfied, then the zero solution of the problem (3.1)-(3.2) is weakly asymptoti-
cally stable.

3.4. APPLICATION

Let Ω be a bounded domain in RN with smooth boundary ∂Ω. We consider
the following PDE

∂u

∂t
(t, x) =

∫ t

0

(t− s)α−2

Γ(α− 1)
∆xu(s, x)ds+ f(t, x), t > 0, x ∈ Ω, (3.6)

where α ∈ (1, 2), the unknown function u satisfies the boundary condition

u(t, x) = 0, x ∈ ∂Ω, t ≥ 0, (3.7)

and the initial condition

u(t, x) = ϕ(t, x), x ∈ Ω, t ≤ 0; (3.8)

the function f is subject to

f(t, x) ∈ b(t, x)

∫ 0

−∞

∫
Ω

ν(θ, y)
[
f1(u(t+ θ, y)), f2(u(t+ θ, y))

]
dydθ, (3.9)

here [f1, f2] = {τf1 + (1 − τ)f2 : τ ∈ [0, 1]}. The system (3.6)-(3.9) can be
seen as a control problem with multi-valued feedback. Let A = ∆ with D(A) =
H2(Ω) ∩ H1

0(Ω), then the resolvent set of A, ρ(A) ⊂ C\(−∞,−λ1], where λ1 =
sup{‖∇u‖2

L2(Ω) : ‖u‖L2(Ω) = 1}. So A is sectorial of type (−λ1, θ) with any θ ∈
(0, π

2
).

Let X = L2(Ω). One sees that Sα(·) is differentiable on (0,∞) and∥∥∥∥ ddtSα(t)u0

∥∥∥∥ ≤ Cαt
−1‖u0‖, t > 0,



16

where Cα is a positive constant. In particular, Sα(·) is norm continuous. So (A’)
is just fulfilled.

Consider the phase space B = CL2
g with g(θ) = ehθ, where the seminorm in B

is given by

|w|B = sup
−r≤θ≤0

‖w(θ)‖X +

(∫ −r
−∞

ehθ‖w(θ)‖2
Xdθ

) 1
2

,

for r = − 1
h

ln(1− h). We have

K(t) =

{
1, 0 ≤ t ≤ r,

1 + 1√
h

√
e−hr − e−ht, t > r;

M(t) =

max

{
e−

1
2ht, 1 +

√
e−hr

h
(1− e−ht)

}
, 0 ≤ t ≤ r,

e−
1
2ht, t > r.

So one observes that K(t) = O(1),M(t) = o(1) as t → ∞, and then (B’) is
satisfied.

We will show that the system (3.6)-(3.9) is weakly asymptotically stable under
a suitable setting. Specifically, we assume that

(N1) b ∈ L1(R+;L2(Ω));

(N2) f1, f2 : R→ R are continuous and satisfy

|fi(z)| ≤ Cf |z|,∀z ∈ R,

for some Cf > 0;

(N3) ν : (−∞, 0]× Ω→ R is a continuous function such that

|ν(θ, y)| ≤ Cνe
hθ,∀y ∈ Ω, θ ≤ 0,

where h ∈ (0, 1) and Cν > 0.

Let F : R+ × B → P(X) be the multimap defined by

F (t, w)(x) = b(t, x)

∫ 0

−∞

∫
Ω

ν(θ, y)
[
f1(w(θ, y)), f2(w(θ, y))

]
dydθ.

Then we see that, for each τ ∈ [0, 1] the function

f(t, x) = b(t, x)

∫ 0

−∞

∫
Ω

ν(θ, y)
[
τf1(w(θ, y)) + (1− τ)f2(w(θ, y))

]
dydθ

is an integrable selector of F (t, w). The assumption (F’)(1) is just satisfied.

Now for each bounded set W ⊂ B, F (t,W ) ⊂ span{b(t, ·)}, which is an one-
dimension subspace of L2(Ω). In addition, by (N2) F (t,W ) is also bounded and
then relatively compact. Hence

χ(F (t,W )) = 0,
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and the assumption (F’)(4) is verified with k = 0. In particular, F (t, w) is
relatively compact for each w ∈ B. In view of the continuity of f1, f2 and the
Lebesgue dominated convergence theorem, we can testify the closedness of F (t, ·).
Thus F (t, ·) has compact values and is u.s.c. The assumption (F’)(2) is satisfied.

Regarding (F’)(3), we have the following estimates

‖F (t, w)‖2 ≤ C2
νC

2
f‖b(t, ·)‖2

(∫ 0

−∞
ehθ
∫

Ω

|w(θ, y)|dydθ
)2

≤ 1

h
C2
νC

2
f‖b(t, ·)‖2

∫ 0

−∞
ehθ
(∫

Ω

|w(θ, y)|dy
)2

dθ

≤ 1

h
C2
νC

2
fµ(Ω)‖b(t, ·)‖2

∫ 0

−∞
ehθ‖w(θ, ·)‖2dθ

=
1

h
C2
νC

2
fµ(Ω)‖b(t, ·)‖2

(∫ 0

−r
+

∫ −r
−∞

)
ehθ‖w(θ, ·)‖2dθ

≤ 1

h
C2
νC

2
fµ(Ω)‖b(t, ·)‖2

(
‖w‖2

C([−r,0];X) +

∫ −r
−∞

ehθ‖w(θ, ·)‖2dθ

)
≤ 1

h
C2
νC

2
fµ(Ω)‖b(t, ·)‖2|w|2B,

thanks to the Hölder inequality and the fact that r = − 1
h

ln(1− h), here µ(Ω) is
the Lebesgue measure of Ω. Then

‖F (t, w)‖ ≤ 1√
h
CνCf

√
µ(Ω)‖b(t, ·)‖|w|B.

Thus (F’)(3) is testified with m(t) = 1√
h
CνCf

√
µ(Ω)‖b(t, ·)‖.

Finally, if we assume, in addition, that b(t, x) = b1(t)b2(x) with b1 ∈ L1(R+), b2 ∈
L2(Ω) then

‖b(t, ·)‖ = b1(t)‖b2‖,
and we can verify condition (3.5) as follows

Λ∞ ≤ sup
t≥0

∫ t

0

C0K∞‖b2‖b1(s)

1 + λ1(t− s)α
ds ≤ C0K∞‖b2‖‖b1‖L1(R+),

where C0 = 1√
h
CCνCf

√
µ(Ω). Therefore (3.5) hold with ‖b2‖‖b1‖L1(R+) small.
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Chapter 4

FINITE-TIME ATTRACTIVITY FOR
SEMILINEAR TEMPERED FRACTIONAL WAVE EQUATIONS

We prove the existence and finite-time attractivity of solutions to semilinear
tempered fractional wave equations with sectorial operator and superlinear non-
linearity. Our analysis is based on the α-resolvent theory, the fixed point theory
for condensing maps and the local estimates of solutions. An application to a
class of partial differential equations will be given.

The content of this chapter is written based on the paper [3] in the author’s
works related to the thesis that has been published.

4.1. PROBLEM SETTING

Let (X, ‖ · ‖) be a Banach space. We consider the following problem

Dα,σu(t) = Au(t) + f(t, ut), t ∈ [0, T ], (4.1)

u(s) = ϕ(s), s ∈ [−h, 0], (4.2)

u′(0) = y, (4.3)

where α ∈ (1, 2), σ > 0, Dα,σ represents the tempered fractional derivative of
order α in the Caputo sense, the state function u takes values in X with the
history state ut ∈ C([−h, 0];X) defined by ut(s) = u(t + s), s ∈ [−h, 0], A is
a closed linear operator on X such that −A is sectorial, and the nonlinearity
function f is defined on [0, T ]× C([−h, 0];X).

4.2. EXISTENCE RESULTS

To study the existence of problem (4.1)-(4.3), we give the following assump-
tions.

(A) The operator −A is sectorial of angle θ with 0 ≤ θ < π(1− α/2).

(F) The map f : [0, T ]× Ch → X is continuous and satisfies:

(1) the growth condition

‖f(t, v)‖ ≤ a+ b‖v‖Ch,∀v ∈ Ch, for a.e. t ∈ [0, T ],

where a, b are nonnegative numbers;

(2) if (λI −A)−1, λ ∈ ρ(A), is non-compact then for any bounded set Ω ⊂ Ch
we have

χ(f(t,Ω)) ≤ k(t) sup
θ∈[−h,0]

χ(Ω(θ)),

where k ∈ L1(0, T ) is a nonnegative function.
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Let Ch = C([−h, 0];X). Then Ch ×X is a Banach space endowed with the norm

‖(x, y)‖ = sup
s∈[−h,0]

‖x(s)‖+ ‖y‖ = ‖x‖Ch + ‖y‖.

we give the following definition of integral solutions for (1)-(3).

Definition 4.1. Given (ϕ, y) ∈ Ch ×X. A function u ∈ C([−h, T ];X) is said to
be an integral solution of problem (1)-(3) on the interval [−h, T ] if and only if
u(t) = ϕ(t) for t ∈ [−h, 0] and

u(t) = e−σtSα(t)ϕ(0) + e−σt(1 ∗ Sα)(t)(y + σϕ(0))ds,

+

∫ t

0

e−σ(t−s)(gα−1 ∗ Sα)(t− s)f(s, us)ds,

for any t ∈ [0, T ].

For ϕ ∈ Ch, we define the space

Cϕ = {u ∈ C([0, T ];X) : u(0) = ϕ(0)}.
as a closed subspace of C([0, T ];X). If v ∈ Cϕ, we have the function v[ϕ] :
[−h, T ]→ X defined by

v[ϕ](t) =

{
ϕ(t) if − h < t ≤ 0,

v(t) if t ∈ [0, T ].

Then, clearly

v[ϕ]t(θ) =

{
ϕ(t+ θ), −h− t < θ < −t,
v(t+ θ), θ ∈ [−t, 0].

Now we consider the operator F : Cϕ → Cϕ given by

F(v)(t) = e−σtSα(t)ϕ(0) + e−σt(1 ∗ Sα)(t)(y + σϕ(0))

+

∫ t

0

e−σ(t−s)(gα−1 ∗ Sα)(t− s)f(s, vs)ds. (4.4)

It is clear that if v is a fixed point of F then v[ϕ] is an integral solution to
(4.1)-(4.3).

Theorem 4.1. Assume that the hypotheses (A) and (F ) hold. Then the solution
set of the problem (4.1)-(4.3) is nonempty and compact.

The assumption (F)(1) indicate that f has a sublinear growth. We now con-
sider the case f is possibly superlinear, so we replace (F) by the following.

(F*) f : [0, T ]×Ch → X is continuous and satisfies (F)(2). In addition, there exist
a function m ∈ C([0, T ];R+) and a nondecreasing function Ψ ∈ C(R+;R+)
such that

‖f(t, v)‖ ≤ m(t)Ψ(‖v‖Ch), ∀v ∈ Ch.
Theorem 4.2. Assume that the hypotheses (A) and (F*) hold. If there exists
R > 0 such that

M‖ϕ‖Ch +MCσ(‖y‖+ σ‖ϕ‖Ch) + CαΓ(α)|Iα,σ0 m|∞Ψ(‖ϕ‖Ch +R) ≤ R, (4.5)

then problem (4.1)-(4.3) has at least one integral solution.
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Remark 4.1. If Ψ possesses a polynomial growth, then the condition (4.5) takes
place provided that ‖(ϕ, y)‖ as well as ‖Iα,σ0 m‖∞ are small. In particular, if
Ψ(r) = rq for q > 1, then (4.5) is testified with small initial data, that is, the
condition on ‖Iα,σ0 m‖∞ is relaxed.

4.3. FINITE - TIME ATTRACTIVITY

In this section, we prove our main result on finite-time attractivity of zero
solution. By S(ξ), we denote the solution set of the problem (4.1)-(4.3) with
respect to initial datum ξ = (ϕ, y). We adopt the following concept of finite-time
attractivity of a solution to (4.1).

Definition 4.2. (Finite-time attractivity). Let ξ0 = (ϕ0, y0) ∈ Ch×X . The solution
u ∈ S(ξ0) is called

(i) attractive on [0, T ] if there exists an η > 0 such that

‖vT − uT‖Ch + ‖v′(T )− u′(T )‖ < ‖ϕ− ϕ0‖Ch + ‖y − y0‖
for all ξ = (ϕ, y) ∈ Bη(ξ0) \ {ξ0} and v ∈ S(ξ), where Bη(ξ0) is the closed ball
in Ch ×X centered at ξ0 with radius η.

(ii) exponentially attractive on [0, T ] if

lim sup
η↘0

1

η
sup

ξ∈Bη(ξ0)

sup
v∈S(ξ)

(‖vT − uT‖Ch + ‖v′(T )− u′(T )‖) < 1.

Obviously, exponential attractivity implies attractivity. We give a sufficient
condition for the exponential attractivity in following lemma.

Lemma 4.1. Let ξ0 = (ϕ0, y0) ∈ Ch × X be given. The solution u ∈ S(ξ0) is
exponentially attractive on [0, T ], provided that

lim sup
‖ξ‖→0

sup
v∈S(ξ+ξ0)

‖vT − uT‖Ch + ‖v′(T )− u′(T )‖
‖ξ‖

< 1. (4.6)

We first study the attractivity of zero solution to (1).

Lemma 4.2. Let (A) and (F*) hold with Ψ being locally Lipschitzian and Ψ(r) =
γr + o(r) as r → 0, where γ is a nonnegative number. Then

lim
ξ=(ϕ,y)→0

sup
u∈S(ξ)

‖ut‖Ch = 0,∀t ∈ [0, T ].

Remark 4.2. The assumption on behavior of Ψ in Lemma 4.2 holds in the
particular case when f(t, 0) = 0 and f(t, ·) is differentiable at 0 in the sense of
Fréchet. In this case, one can choose Ψ as a polynomial.

Theorem 4.3. Let the hypotheses of Lemma 4.2 hold. Then the zero solution of
(1) is exponentially attractive on [0, T ], provided that

Φ(T ) + Σ(T ) < 1 (4.7)

where
Φ(t) = M max{t, 2 + σt}e−σ(t−h)Eα

(
tαγ|m|∞eσhCαΓ(α)

)
,
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and

Σ(t) = e−σt max
{
Ct−1 +Mσ2t,M(1 + σt)

}
+ γCα

(∫ t

0

[
σ(t− s)α−1 + (t− s)α−2

]
e−σ(t−s)Φ(s)ds

)
.

In order to prove the attractivity of a nonzero solution, we need the following
assumption on the nonlinearity.

(F]) The function f : [0, T ] × Ch → X is continuous and satisfies (F)(2). In
addition, there exist a function m ∈ C([0, T ];R+) and a nondecreasing, locally
Lipschitz function Ψ ∈ C(R+;R+) such that Ψ(r) = γr + o(r) as r → 0 for
some γ ≥ 0, and it holds that

‖f(t, v1)− f(t, v2)‖ ≤ m(t)Ψ(‖v1 − v2‖Ch), ∀v1, v2 ∈ Ch.
Theorem 4.4. Let (A) and (F ]) hold. Then every solution of (1) is exponentially
attractive on [0, T ], provided that

Φ(T ) + Σ(T ) < 1,

where Φ and Σ are the functions given in Theorem 4.3.

4.4. APPLICATION

Let Ω ⊂ Rn be a bounded domain with smooth boundary ∂Ω. We consider the
following problem

∂α,σt u(t, x) = ∆xu(t, x)

+ f̃

(
t, u(t, x),

∫
Ω

k(y)u(t− h, y)dy

)
, x ∈ Ω, t ∈ [0, T ], (4.8)

u(t, x) = 0, x ∈ ∂Ω, t > 0, (4.9)

u(s, x) = ϕ(s, x), x ∈ Ω, s ∈ [−h, 0], (4.10)

∂tu(0, x) = y(x), x ∈ Ω, (4.11)

where α ∈ (1, 2), σ > 0, ∂α,σt stands for the tempered Caputo fractional derivative
of order α, f̃ : [0, T ]× R2 → R is a continuous function and k ∈ L2(Ω).

Let X = L2(Ω) and A = ∆ with D(A) = H2(Ω) ∩ H1
0(Ω). Then A is the

generator of a compact semigroup {S(t)}t≥0. Since the spectrum of −A is the
set of eigenvalues of −A, which are positive numbers, one sees that 0 ∈ ρ(A)
and −A ∈ Sect(θ) with θ = 0. So A generates a compact α-resolvent {Sα(t)}t≥0

possessing all properties.

Regarding the nonlinearity f̃ , we assume, in addition, that

|f̃(t, y, z)| ≤ m(t)|y||z|p,∀(t, y, z) ∈ [0, T ]× R2, (4.12)

for some m ∈ C([0, T ];R+), p > 0.

Put Ch = C([−h, 0];L2(Ω)). We determine the function f : [0, T ]×Ch → L2(Ω)
as follows

f(t, φ)(x) = f̃

(
t, φ(0, x),

∫
Ω

k(y)φ(−h, y)dy

)
.
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Obviously, the problem (4.8)-(4.10) is a prototype of (1)-(2).

By using (4.12), we have

|f(t, φ)(x)| ≤ m(t)|φ(0, x)|
(∫

Ω

|k(y)||φ(−ρ(0), y)|dy
)p

≤ m(t)|φ(0, x)|‖k‖pX‖φ(−ρ(0), ·)‖pX ,

thanks to the Hölder inequality. So

‖f(t, φ)‖ ≤ m(t)‖k‖pX‖φ(0, ·)‖X‖φ(−ρ(0), ·)‖pX
≤ m(t)‖k‖pX sup

s∈[−h,0]

‖φ(s, ·)‖p+1
X

= m(t)‖k‖pX‖φ‖
p+1
Ch .

One can check that f is continuous, thanks to the continuity of f̃ and the Lebesgue
dominated theorem. Hence f satisfies (F*) with Ψ(r) = ‖k‖pXrp+1 = o(r) as r →
0. Using Theorem 4.3, we conclude that the zero solution to (4.8) is exponentially
attractive on [0, T ], provided that

M max{T, 2 + σT}eσh + max
{
CT−1 +Mσ2T,M(1 + σT )

}
< eσT ,

where M = supt∈[0,T ] ‖Sα(t)‖ and C = supt∈[0,T ] ‖tA(gα−1 ∗ Sα)(t)‖.
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CONCLUSION

1. RESULTS OF THE THESIS

This thesis has studied the behavior of solutions to some classes of evolution
equations and inclusions with delays in Banach space. The results are:

• For a class of fractional partial integro-differential equations with finite delays:
We proved the global solvability and the stability of zero solution.

• For a class of fractional partial integro-differential inclusions with infinite
delays: We proved the existence of integral solutions and the weak stability
of zero solution.

• For semilinear tempered fractional wave equations with finite delays: We
proved the existence of solutions on compact intervals even if the nonlinear
part may be possibly superlinear, give out definitions on finite-time attrac-
tivity and exponential attractivity for system with delays, establish sufficient
conditions ensuring finite-time exponential attractivity and then use it to
obtain the exponential attractivity on compact intervals of the zero solution.

2. RECOMMENDATION

Beside the results obtained in this thesis, some open questions are:

• Study the behavior of solutions to some fractional differential equations and
inclusions without Measure of non-compactness conditions.

• Study the solvability or/and the stability (finite-time or Lyapunov) of solu-
tions for stochastic fractional differential systems.

• Study the solution regularity, the structure of solution set for fractional dif-
ferential systems.
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